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Summary. The widely used textbook by Brassard and Bratley [4] includes a chapter
devoted to asymptotic notation (Chapter 3, pp. 79–97). We have attempted to test how suitable
the current version of Mizar is for recording this type of material in its entirety. This article is
a follow-up to [13] in which we introduced the basic notions and general theory. This article
presents a Mizar formalization of examples and solutions to problems from Chapter 3 of [4]
(some of the examples and solved problems are also in [13]). Not all problems have been
solved as some required solutions not amenable for formalization.

MML Identifier: ASYMPT_1.

WWW: http://mizar.org/JFM/Vol11/asympt_1.html

The articles [19], [25], [2], [21], [8], [5], [6], [20], [23], [1], [11], [9], [26], [14], [16], [17], [12],
[15], [22], [10], [18], [3], [7], [24], and [13] provide the notation and terminology for this paper.

1. EXAMPLES FROM THETEXT

Let us note that every element ofN is non negative.
We follow the rules:c, e denote real numbers,k, n, m, N, n1, M denote natural numbers, andx

denotes a set.
The following propositions are true:

(1) Let t, t1 be sequences of real numbers. Suppose that

(i) t(0) = 0,

(ii) for everyn such thatn > 0 holdst(n) = (12·n3 · log2n−5·n2)+(log2n)2 +36,

(iii) t1(0) = 0, and

(iv) for everyn such thatn > 0 holdst1(n) = n3 · log2n.

Then there exist eventually-positive sequencess, s1 of real numbers such thats= t ands1 = t1
ands∈ O(s1).

(2) Leta, b be logbase real numbers andf , g be sequences of real numbers. Supposea> 1 and
b > 1 and f (0) = 0 and for everyn such thatn > 0 holds f (n) = logan andg(0) = 0 and for
everyn such thatn > 0 holdsg(n) = logbn. Then there exist eventually-positive sequencess,
s1 of real numbers such thats= f ands1 = g andO(s) = O(s1).

Let a, b, c be real numbers. The functor{ab·n+c)}n∈N yielding a sequence of real numbers is
defined by:

1This work has been supported by NSERC Grant OGP9207.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol11/asympt_1.html


ASYMPTOTIC NOTATION. PART II: EXAMPLES . . . 2

(Def. 1) ({ab·n+c)}n∈N)(n) = ab·n+c.

Let a be a positive real number and letb, c be real numbers. One can verify that{ab·n+c)}n∈N is
eventually-positive.

One can prove the following proposition

(3) For all positive real numbersa, b such thata < b holds{b1·n+0)}n∈N /∈ O({a1·n+0)}n∈N).

The sequence{log2n}n∈N of real numbers is defined as follows:

(Def. 2) {log2n}n∈N(0) = 0 and for everyn such thatn > 0 holds{log2n}n∈N(n) = log2n.

Let a be a real number. The functor{na}n∈N yields a sequence of real numbers and is defined
by:

(Def. 3) {na}n∈N(0) = 0 and for everyn such thatn > 0 holds{na}n∈N(n) = na.

Let us note that{log2n}n∈N is eventually-positive.
Let a be a real number. Observe that{na}n∈N is eventually-positive.
We now state several propositions:

(4) Let f , g be eventually-nonnegative sequences of real numbers. ThenO( f ) ⊆ O(g) and
O( f ) 6= O(g) if and only if f ∈ O(g) and f /∈ Ω(g).

(5) O({log2n}n∈N)⊆ O({n( 1
2)}n∈N) andO({log2n}n∈N) 6= O({n( 1

2)}n∈N).

(6) {n( 1
2)}n∈N ∈ Ω({log2n}n∈N) and{log2n}n∈N /∈ Ω({n( 1

2)}n∈N).

(7) For every sequencef of real numbers and for every natural numberk such that for everyn
holds f (n) = ∑n

κ=0({nk}n∈N)(κ) holds f ∈ Θ({n(k+1)}n∈N).

(8) Let f be a sequence of real numbers. Supposef (0) = 0 and for everyn such thatn > 0
holds f (n) = nlog2 n. Then there exists an eventually-positive sequencesof real numbers such
thats= f ands is not smooth.

Let b be a real number. The functor{b}n∈N yielding a sequence of real numbers is defined as
follows:

(Def. 4) {b}n∈N = N 7−→ b.

Let us note that{1}n∈N is eventually-nonnegative.
We now state the proposition

(9) Let f be an eventually-nonnegative sequence of real numbers. Then there exists a non
empty setF of functions fromN to R such thatF = {{n1}n∈N} and f ∈ FO({1}n∈N) iff there
exist N, c, k such thatc > 0 and for everyn such thatn ≥ N holds 1≤ f (n) and f (n) ≤
c· {nk}n∈N(n).

2. PROBLEM 3.1

We now state the proposition

(10) For every sequencef of real numbers such that for everyn holds f (n) = (3·106−18·103 ·
n)+27·n2 holds f ∈ O({n2}n∈N).



ASYMPTOTIC NOTATION. PART II: EXAMPLES . . . 3

3. PROBLEM 3.5

We now state three propositions:

(11) {n2}n∈N ∈ O({n3}n∈N).

(12) {n2}n∈N /∈ Ω({n3}n∈N).

(13) There exists an eventually-positive sequences of real numbers such thats= {21·n+1)}n∈N
and{21·n+0)}n∈N ∈ Θ(s).

Let a be a natural number. The functor{(n+ a)!}n∈N yielding a sequence of real numbers is
defined by:

(Def. 5) {(n+a)!}n∈N(n) = (n+a)!.

Let a be a natural number. Note that{(n+a)!}n∈N is eventually-positive.
Next we state the proposition

(14) {(n+0)!}n∈N /∈ Θ({(n+1)!}n∈N).

4. PROBLEM 3.6

We now state the proposition

(15) For every sequencef of real numbers such thatf ∈ O({n1}n∈N) holds f f ∈ O({n2}n∈N).

5. PROBLEM 3.7

One can prove the following proposition

(16) There exists an eventually-positive sequences of real numbers such thats= {21·n+0)}n∈N
and 2{n1}n∈N ∈ O({n1}n∈N) and{22·n+0)}n∈N /∈ O(s).

6. PROBLEM 3.8

We now state the proposition

(17) If log23 < 159
100, then{n(log2 3)}n∈N ∈ O({n( 159

100)}n∈N) and{n(log2 3)}n∈N /∈ Ω({n( 159
100)}n∈N)

and{n(log2 3)}n∈N /∈ Θ({n( 159
100)}n∈N).

7. PROBLEM 3.11

Next we state the proposition

(18) Let f , g be sequences of real numbers. Suppose for everyn holds f (n) = nmod 2 and for
everyn holdsg(n) = (n+1)mod 2. Then there exist eventually-nonnegative sequencess, s1

of real numbers such thats= f ands1 = g ands /∈ O(s1) ands1 /∈ O(s).

8. PROBLEM 3.19

We now state two propositions:

(19) For all eventually-nonnegative sequencesf , g of real numbers holdsO( f ) = O(g) iff f ∈
Θ(g).

(20) For all eventually-nonnegative sequencesf , g of real numbers holdsf ∈ Θ(g) iff Θ( f ) =
Θ(g).
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9. PROBLEM 3.21

One can prove the following propositions:

(21) Lete be a real number andf be a sequence of real numbers. Suppose 0< e and f (0) =
0 and for everyn such thatn > 0 holds f (n) = n · log2n. Then there exists an eventually-
positive sequences of real numbers such thats= f andO(s) ⊆ O({n(1+e)}n∈N) andO(s) 6=
O({n(1+e)}n∈N).

(22) Lete be a real number andg be a sequence of real numbers. Suppose 0< e ande< 1 and
g(0) = 0 andg(1) = 0 and for everyn such thatn > 1 holdsg(n) = n2

log2 n. Then there exists

an eventually-positive sequencesof real numbers such thats= g andO({n(1+e)}n∈N)⊆O(s)
andO({n(1+e)}n∈N) 6= O(s).

(23) Let f be a sequence of real numbers. Supposef (0) = 0 and f (1) = 0 and for everyn

such thatn> 1 holds f (n) = n2

log2 n. Then there exists an eventually-positive sequencesof real

numbers such thats= f andO(s)⊆ O({n8}n∈N) andO(s) 6= O({n8}n∈N).

(24) Let g be a sequence of real numbers. Suppose that for everyn holdsg(n) = ((n2−n)+
1)4. Then there exists an eventually-positive sequences of real numbers such thats= g and
O({n8}n∈N) = O(s).

(25) Lete be a real number. Suppose 0< e ande< 1. Then there exists an eventually-positive
sequences of real numbers such thats = {1+e1·n+0)}n∈N and O({n8}n∈N) ⊆ O(s) and
O({n8}n∈N) 6= O(s).

10. PROBLEM 3.22

One can prove the following propositions:

(26) Let f , g be sequences of real numbers. Supposef (0) = 0 and for everyn such thatn > 0
holds f (n) = nlog2 n andg(0) = 0 and for everyn such thatn > 0 holdsg(n) = n

√
n. Then

there exist eventually-positive sequencess, s1 of real numbers such thats= f ands1 = g and
O(s)⊆ O(s1) andO(s) 6= O(s1).

(27) Let f be a sequence of real numbers. Supposef (0) = 0 and for everyn such thatn > 0
holds f (n) = n

√
n. Then there exist eventually-positive sequencess, s1 of real numbers such

thats= f ands1 = {21·n+0)}n∈N andO(s)⊆ O(s1) andO(s) 6= O(s1).

(28) There exist eventually-positive sequencess, s1 of real numbers such thats= {21·n+0)}n∈N
ands1 = {21·n+1)}n∈N andO(s) = O(s1).

(29) There exist eventually-positive sequencess, s1 of real numbers such thats= {21·n+0)}n∈N
ands1 = {22·n+0)}n∈N andO(s)⊆ O(s1) andO(s) 6= O(s1).

(30) There exists an eventually-positive sequences of real numbers such thats= {22·n+0)}n∈N
andO(s)⊆ O({(n+0)!}n∈N) andO(s) 6= O({(n+0)!}n∈N).

(31) O({(n+0)!}n∈N)⊆ O({(n+1)!}n∈N) andO({(n+0)!}n∈N) 6= O({(n+1)!}n∈N).

(32) Let g be a sequence of real numbers. Supposeg(0) = 0 and for everyn such thatn > 0
holdsg(n) = nn. Then there exists an eventually-positive sequencesof real numbers such that
s= g andO({(n+1)!}n∈N)⊆ O(s) andO({(n+1)!}n∈N) 6= O(s).

11. PROBLEM 3.23

One can prove the following proposition

(33) Let givenn. Supposen≥ 1. Let f be a sequence of real numbers andk be a natural number.
If for everyn holds f (n) = ∑n

κ=0({nk}n∈N)(κ), then f (n)≥ nk+1

k+1 .
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12. PROBLEM 3.24

We now state the proposition

(34) Let f , g be sequences of real numbers. Supposeg(0) = 0 and for everyn such thatn > 0
holdsg(n) = n· log2n and for everyn holds f (n) = log2(n!). Then there exists an eventually-
nonnegative sequences of real numbers such thats= g and f ∈ Θ(s).

13. PROBLEM 3.26

One can prove the following proposition

(35) Let f be an eventually-nondecreasing eventually-nonnegative sequence of real numbers
and t be a sequence of real numbers. Suppose that for everyn holds if nmod 2= 0, then
t(n) = 1 and ifnmod 2= 1, thent(n) = n. Thent /∈ Θ( f ).

14. PROBLEM 3.28

Let f be a function fromN into R∗ and letn be a natural number. Thenf (n) is a finite sequence of
elements ofR.

Let n be a natural number and leta, b be positive real numbers. The functor Prob28(n,a,b)
yielding a real number is defined by:

(Def. 6)(i) Prob28(n,a,b) = 0 if n = 0,

(ii) there exists a natural numberl and there exists a functionp28 from N into R∗ such that
l +1= n and Prob28(n,a,b) = p28(l)n andp28(0) = 〈a〉 and for every natural numbern there
exists a natural numbern1 such thatn1 = dn+1+1

2 e andp28(n+1) = p28(n) a 〈4 · p28(n)n1 +
b· (n+1+1)〉, otherwise.

Let a, b be positive real numbers. The functor{Prob28(n,a,b)}n∈N yields a sequence of real
numbers and is defined as follows:

(Def. 7) ({Prob28(n,a,b)}n∈N)(n) = Prob28(n,a,b).

We now state the proposition

(36) For all positive real numbersa, b holds{Prob28(n,a,b)}n∈N is eventually-nondecreasing.

15. PROBLEM 3.30

The non empty subset{2n : n∈ N} of N is defined by:

(Def. 8) {2n : n∈ N}= {2n : n ranges over natural numbers}.

We now state three propositions:

(37) Let f be a sequence of real numbers. Suppose that for everyn holds if n∈ {2n : n∈ N},
then f (n) = n and if n /∈ {2n : n ∈ N}, then f (n) = 2n. Then f ∈ Θ({n1}n∈N|{2n : n ∈ N})
and f /∈ Θ({n1}n∈N) and{n1}n∈N is smooth andf is not eventually-nondecreasing.

(38) Let f , g be sequences of real numbers. Supposef (0) = 0 and for everyn such thatn > 0

holds f (n) = n2blog2nc
andg(0) = 0 and for everyn such thatn > 0 holdsg(n) = nn. Then

there exists an eventually-positive sequences of real numbers such that

(i) s= g,

(ii) f ∈ Θ(s|{2n : n∈ N}),
(iii) f /∈ Θ(s),

(iv) f is eventually-nondecreasing,

(v) s is eventually-nondecreasing, and

(vi) s is not smooth w.r.t. 2.
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(39) Letg be a sequence of real numbers. Suppose that for everyn holds ifn∈ {2n : n∈N}, then
g(n) = n and ifn /∈ {2n : n∈ N}, theng(n) = n2. Then there exists an eventually-positive se-
quencesof real numbers such thats= g and{n1}n∈N ∈Θ(s|{2n : n∈N}) and{n1}n∈N /∈Θ(s)
ands2∈O(s) and{n1}n∈N is eventually-nondecreasing ands is not eventually-nondecreasing.

16. PROBLEM 3.31

Let x be a natural number. The functorx¡ yielding a natural number is defined as follows:

(Def. 9)(i) There existsn such thatn! ≤ x andx < (n+1)! andx¡ = n! if x 6= 0,

(ii) x¡ = 0, otherwise.

The following proposition is true

(40) Let f be a sequence of real numbers. Suppose that for everyn holds f (n) = n¡. Then there
exists an eventually-positive sequences of real numbers such thats= f and f is eventually-
nondecreasing and for everyn holds f (n)≤ {n1}n∈N(n) ands is not smooth.

17. PROBLEM 3.34

Let us observe that{n1}n∈N−{1}n∈N is eventually-positive.
We now state the proposition

(41) Θ({n1}n∈N−{1}n∈N)+Θ({n1}n∈N) = Θ({n1}n∈N).

18. PROBLEM 3.35

The following proposition is true

(42) There exists a non empty setF of functions fromN to R such thatF = {{n1}n∈N} and for
everyn holds{n(−1)}n∈N(n)≤ {n1}n∈N(n) and{n(−1)}n∈N /∈ FO({1}n∈N).

19. ADDITION

One can prove the following proposition

(43) Letc be a non negative real number andx, f be eventually-nonnegative sequences of real
numbers. Givene, N such thate > 0 and for everyn such thatn ≥ N holds f (n) ≥ e. If
x∈ O(c+ f ), thenx∈ O( f ).

20. POTENTATIALLY USEFUL

We now state a number of propositions:

(44) 22 = 4.

(45) 23 = 8.

(46) 24 = 16.

(47) 25 = 32.

(48) 26 = 64.

(49) 212 = 4096.

(50) For everyn such thatn≥ 3 holdsn2 > 2·n+1.

(51) For everyn such thatn≥ 10 holds 2n−1 > (2·n)2.



ASYMPTOTIC NOTATION. PART II: EXAMPLES . . . 7

(52) For everyn such thatn≥ 9 holds(n+1)6 < 2·n6.

(53) For everyn such thatn≥ 30 holds 2n > n6.

(54) For every real numberx such thatx > 9 holds 2x > (2·x)2.

(55) There existsN such that for everyn such thatn≥ N holds
√

n− log2n > 1.

(56) For all real numbersa, b, c such thata > 0 andc > 0 andc 6= 1 holdsab = cb·logc a.

(57) (4+1)! = 120.

(58) 55 = 3125.

(59) 44 = 256.

(60) For everyn holds(n2−n)+1 > 0.

(61) For everyn such thatn≥ 2 holdsn! > 1.

(62) For alln1, n such thatn≤ n1 holdsn! ≤ n1!.

(63) For everyk such thatk≥ 1 there existsn such thatn! ≤ k andk < (n+1)! and for everym
such thatm! ≤ k andk < (m+1)! holdsm= n.

(64) For everyn such thatn≥ 2 holdsdn
2e< n.

(65) For everyn such thatn≥ 3 holdsn! > n.

(67)1 For everyn such thatn≥ 2 holds 2n > n+1.

(68) Leta be a logbase real number andf be a sequence of real numbers. Supposea > 1 and
f (0) = 0 and for everyn such thatn > 0 holds f (n) = logan. Then f is eventually-positive.

(69) For all eventually-nonnegative sequencesf , g of real numbers holdsf ∈O(g) andg∈O( f )
iff O( f ) = O(g).

(70) For all real numbersa, b, c such that 0< a anda≤ b andc≥ 0 holdsac ≤ bc.

(71) For everyn such thatn≥ 4 holds 2·n+3 < 2n.

(72) For everyn such thatn≥ 6 holds(n+1)2 < 2n.

(73) For every real numberc such thatc > 6 holdsc2 < 2c.

(74) Let e be a positive real number andf be a sequence of real numbers. Supposef (0) = 0
and for everyn such thatn > 0 holds f (n) = log2(n

e). Then f/{ne}n∈N is convergent and
lim( f/{ne}n∈N) = 0.

(75) For every real numbere such thate > 0 holds{log2n}n∈N/{ne}n∈N is convergent and
lim({log2n}n∈N/{ne}n∈N) = 0.

(76) For every sequencef of real numbers and for everyN such that for everyn such thatn≤N
holds f (n)≥ 0 holds∑N

κ=0 f (κ)≥ 0.

(77) For all sequencesf , g of real numbers and for everyN such that for everyn such thatn≤N
holds f (n)≤ g(n) holds∑N

κ=0 f (κ)≤ ∑N
κ=0g(κ).

(78) Let f be a sequence of real numbers andb be a real number. Supposef (0) = 0 and for
everyn such thatn > 0 holds f (n) = b. Let N be a natural number. Then∑N

κ=0 f (κ) = b·N.

(79) For all sequencesf , g of real numbers and for all natural numbersN, M holds
∑M

κ=N+1 f (κ)+ f (N+1) = ∑M
κ=N+1+1 f (κ).

1 The proposition (66) has been removed.
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(80) Let f , g be sequences of real numbers,M be a natural number, and givenN. SupposeN ≥
M +1. If for everyn such thatM +1≤ n andn≤ N holds f (n)≤ g(n), then∑M

κ=N+1 f (κ)≤
∑M

κ=N+1g(κ).

(81) For everyn holdsdn
2e ≤ n.

(82) Let f be a sequence of real numbers,b be a real number, andN be a natural number.
Supposef (0) = 0 and for everyn such thatn > 0 holds f (n) = b. Let M be a natural number.
Then∑M

κ=N+1 f (κ) = b· (N−M).

(83) Let f , g be sequences of real numbers,N be a natural number, andc be a real number.
Supposef is convergent and limf = c and for everyn such thatn≥ N holds f (n) = g(n).
Theng is convergent and limg = c.

(84) For everyn such thatn≥ 1 holds(n2−n)+1≤ n2.

(85) For everyn such thatn≥ 1 holdsn2 ≤ 2· ((n2−n)+1).

(86) For every real numberesuch that 0< eande< 1 there existsN such that for everyn such
thatn≥ N holdsn· log2(1+e)−8· log2n > 8· log2n.

(87) For everyn such thatn≥ 10 holds22·n
n! < 1

2n−9 .

(88) For everyn such thatn≥ 3 holds 2· (n−2)≥ n−1.

(89) For every real numberc such thatc≥ 0 holdsc
1
2 =

√
c.

(90) There existsN such that for everyn such thatn≥ N holdsn−
√

n· log2n > n
2.

(91) For every sequencesof real numbers such that for everyn holdss(n) = (1+ 1
n+1)n+1 holds

s is non-decreasing.

(92) For everyn such thatn≥ 1 holds(n+1
n )n ≤ (n+2

n+1)n+1.

(93) For allk, n such thatk≤ n holds
(n

k

)
≥ (n+1

k )
n+1 .

(94) For every sequencef of real numbers such that for everyn holds f (n) = log2(n!) and for
everyn holds f (n) = ∑n

κ=0({log2n}n∈N)(κ).

(95) For everyn such thatn≥ 4 holdsn· log2n≥ 2·n.

(96) Let a, b be positive real numbers. Then Prob28(0,a,b) = 0 and Prob28(1,a,b) = a
and for everyn such thatn ≥ 2 there existsn1 such thatn1 = dn

2e and Prob28(n,a,b) =
4·Prob28(n1,a,b)+b·n.

(97) For everyn such thatn≥ 2 holdsn2 > n+1.

(98) For everyn such thatn≥ 1 holds 2n+1−2n > 1.

(99) For everyn such thatn≥ 2 holds 2n−1 /∈ {2n : n∈ N}.

(100) For alln, k such thatk≥ 1 andn! ≤ k andk < (n+1)! holdsk¡ = n!.

(101) For all real numbersa, b, c such thata > 1 andb≥ a andc≥ 1 holds logac≥ logbc.
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